

Being *dependent* rather than *disabled* in France: does the institutional barrier at age 60 affect care arrangements ?

Marianne Tenand

Paris School of Economics & Ecole normale supérieure, PjSE

ILPN Conference - London Wednesday, September 6th 2016

- For some individuals: impossibility to perform activities of daily living
 - Eating, bathing, using a phone, doing one's shopping, etc.
- Two kinds of costs associated with impairments
 - Revenue costs
 - 2 Extra expenditure costs
- In developed countries, public policies implemented to:
 - Provide individuals with a replacement income
 - 2 Enable them to get assistance in the activities of daily living $(\rightarrow \text{LTC})$
 - Subsidies on home care services or nursing home fees, support to informal caregivers

Cove

Graphical

France: Disabled adults vs dependent elderly

- In France, **two different regimes** of public intervention compensating for extra-expenditures costs
 - 1 Disability: adults less than 60
 - **Dependence**: the "elderly" (60 or more)

Table 1: Disability and dependence HC benefits in 2008

	Total spending	Nb recipients	Average benefit
			per month
Disability transfers	1.0 B€	148,000	571€
Dependence transfers	3.3 B€	722,000	383€

- An **equity** concern?
 - Anecdotal evidence
 - But hard to assess in a systematic way

 \Rightarrow RQ: How does the "barrier at age 60" affect individuals with impairments living in the community?

- Two underlying questions we focus on:
 - Does the coverage of the population by home care benefits differ on both sides of the institutional discontinuity?
 - ② Does it make a difference to be aged 60+ rather than 60- in terms of the home care you actually receive?
- Provision of care for individuals living in the community
 - $\bullet~$ Care provided by professional workers $\rightarrow~$ formal care (FC)
 - $\bullet\,$ Care provided by relatives or friends $\rightarrow\,$ informal care (IC)

- Objective: we want to compare coverage rates by schemes and home care utilization of two individuals "similar" in all respects but their age
 - Individuals below age 60 and individuals beyond age 60 differ in terms of sociodemographic characteristics

 \Rightarrow Need to control for differences in individual characteristics other than the institutional difference

• Tool: econometric analysis

- Multiple regressions
- Regression Discontinuity Design (RDD) at age 60
- Simultaneous equations setting to account for the joint determination of IC and FC utilization

- French **Disability and Health Survey** on Households (HSM), 2008
 - Individuals living in the community
 - Rich information on disabilities (ADL, IADL and functional limitations), health, socio-demographic characteristics and family composition
 - FC and IC utilization and caregivers' characteristics
- Selected individuals:
 - Age around the institutional threshold: 50-74 years-old

Coverage

Grap

Graphical evidence

Coverage by home care schemes

• 20% HC beneficiaries aged 60- have no ADL/IADL restrictions, against only 7% of 60+ beneficiaries

Figure 1: Impairments of HC scheme beneficiaries

- Individuals 60+ are more likely to benefit from HC benefits
 - Odd-ratio > 1
 - Controling for disability level, individual characteristics and family structure

Coverage

Graphical eviden

From HC benefits to informal and formal care utilization

- $\underline{\wedge}$ Information on benefits received is poor
 - No information on amount received

 \rightarrow Focus on FC and IC utilization rates as indicators of the extent of disability compensation at the individual level

Informal care

- Individual must receive the help of at least one relative or friend
- $\bullet\,$ Must be assistance with ADL/IADL

Formal care

- Individual must receive at home the services of at least one professional caregiver
- Must not be exclusively made of "intensive cure" services

∧ Only binary measures (receive/does not receive)

Cove

Graphical evidence

Graphical evidence (1): HC utilization

Figure 2: Home care utilization rate around age 60

Sample: Individuals with ADL or IADL restrictions (N=3,185)

Graphical evidence (2): IC utilization

Figure 3: Informal care utilization rate around age 60

Sample: Individuals with ADL or IADL restrictions (N=3,185)

Graphical evidence (3): FC utilization

Figure 4: Formal home care utilization rate around age 60

Sample: Individuals with ADL or IADL restrictions (N=3,185)

rage

Table 2: Informal care and formal care utilization

Average partial effect of being 60 or more (Probit estimation)

Outcome	(1)	(2)	(3)	
P(IC = 1)	-0.031**	-0.038**	-0.043**	
. ,	(0.013)	(0.016)	(0.018)	
P(FC = 1)	0.066***	0.092***	0.103***	
	(0.016)	(0.018)	(0.019)	
P(IC = 1, FC = 1)	0.040***	0.058***	0.065***	
	(0.012)	(0.013)	(0.014)	
ρ	-0.409***	-0.408***	-0.409***	
Age effects	None	None	None	
Relatives' residence	Yes	Yes	Yes	
Other controls	Yes	Yes	Yes	
Ages excluded	None	60-61	60-64	
N	3185	2926	2645	
* $p < 0.10$, ** $p < 0.05$, *** $p < 0.01$				

 \rightarrow Substantial increase in FC utilization / smaller decrease in IC use

Institutional thresholds of ages 60 and 65 in public schemes induce individuals falling into the perimeter of dependence policies to:

- Be more likely to receive HC benefits
- Use more often formal home care: 6 to 10 pct pt increase
- Receive less often informal care: 2-4 pct pt decrease
 - Effect proportionally lower
- Effect on joint utilization: positive, but less robust

 \rightarrow Consistent with the small crowding-out effect of IC by FC found in the literature for individuals living in the community

• Results valid conditional on living in the community

Figure 5: Probability to live in an institution around age 60

Source: HSM-HSI matched sample, 2008-2009

• Living in an institution: also affected by the age 60 threshold

• Institutional differences between disability and dependence schemes also exist in institutional care benefits

- Overall, the institutional age barriers affect the way impairments are being compensated on a daily basis
 - Contribution to the literature on the impact of institutional differences in public schemes
- Also suggesting that FC consumption is price-sensitive
 - In line with seminal and more recent studies on the US and Europe
- Two main implications
 - An equity issue: why would individuals below and above 60 have their impairments compensated differentely?
 - ② An efficiency issue: individuals react to the consumer-price of care → are hourly subsidies the best tool for expenditure-compensation policies?

- 2005 law in France: disability-compensating schemes are meant to be *consequentialist*
 - Age is not a legitimate criteria for access to benefits
- 2016: LTC policies are still dual
 - 2011 national debate on LTC: dead-end for project of unification of schemes
 - Argument being rolled over: budgetary constraints

Motivation Data Coverage Graphical evidence Estimation results Conclusions

Thanks for your attention!

marianne.tenand@ens.fr

Figure 6: Disability and dependence schemes in France

DA = Disabled Adults; DE = Dependent Elderly

- Most benefits work as a hourly subsidy on the price of human care
- Multiple differences in impairments definition used, in eligibility rules, in amounts allocated, in activities that can be subsidized

Supplementary material

Care utilization: a family decision model

• FC and IC as 2 factors of production of *W*, the well-being of an individual with impairments *D*

$$W = W(IC, FC; D)$$

- Family decision model: 2 decision-makers, the individual and her relative(s)
 - FC and IC utilization as the product of a **non-cooperative** game (Pezzin and Schone, 1999)
- Individual's and relatives' utility maximization:
 - Individual decides upon FC utilization given her time and budget constraints and taking IC provision as given
 - Altruistic relatives decide upon IC utilization given their time and budget constraints, taking FC use as given

Care utilization as simultaneous decisions

- Home care subsidies, DS, enter budget constraints
- Reaction functions:

$$FC = g^{F}(IC, X_{F}, DS; D)$$
$$IC = g^{I}(FC, X_{I}, DS; D)$$

• Cournot-Nash equilibrium (structural form):

$$\begin{cases} FC^* = g^F(IC^*, X_F, DS; D) \\ IC^* = g^I(FC^*, X_I, DS; D) \end{cases}$$

Reduced-form:

$$\begin{cases} FC^* = g^F(X_F, X_I, DS; D) \\ IC^* = g^I(X_F, X_I, DS; D) \end{cases}$$

	Below 60	60 or more	Difference
Woman	61.1%	66.0%	4.9***
Average age	54.9	67.7	12.8***
Self-declared health status			
Bad	62.1%	62.8%	0.7
Average	27.5%	28.5%	1.0
Good	10.4%	8.6%	-1.8*
Physical and cognitive impairments			
Average nb of ADL	0.9	1.2	0.2***
Average nb of non-cognitive IADL	2.2	2.8	0.6***
Average nb of cognitive ADL	0.6	0.9	0.2***
Education level			
No degree	36.1%	44.2%	8.1***
Primary education degree	24.9%	30.3%	5.4***
Secondary education degree	31.9%	19.5%	-12.3***
College or university degree	7.2%	6.0%	-1.1
Monthly household income (per c.u.)			
1st quartile	28.0%	22.8%	-5.1***
2nd quartile	22.2%	27.3%	5.1***
3rd quartile	24.1%	25.7%	1.6
4th quartile	25.8%	24.2%	-1.5
Work status			-
Is employed	18.8%	2.0%	-16.9***
Is retired	5.9%	83.5%	77.7***
Area of residence			
Lives in a rural area	20.5 %	21.3%	0.8
Lives in a small urban area	16.9%	15.4%	-1.4
Lives in a medium urban area	15.3%	16.3%	-1.0
Lives in a large urban area	35.3%	35.1%	-0.2
Lives in Paris	12.0%	11.9%	-0.2
N	1.398	1.787	-

Table 3: Socio-demographic characteristics

Table 4:	Family	characteristics
----------	--------	-----------------

	Below 60	60 or more	Difference
Children			
Having at least a child alive	82.5 %	85.4%	2.8**
Number of children	2.2	2.6	0.4***
Proportion of girls	0.4	0.4	0.0
Residence of closest child			
No child	17.5%	14.6%	-2.8**
Abroad	1.0%	1.0%	0.0
In France but not in the same city	31.8%	37.4%	5.5***
In the same city	13.5%	28.9%	15.4***
Co-residing	36.2%	18.1%	-18.1***
Siblings			
At least one sister or brother alive	90.8%	80.4%	-10.4***
One sister or more alive	75.9%	65.2%	-10.7**
Number of siblings	3.6	2.5	-1.1**
Average age of siblings	54.3	65.9	11.6**
Parents			
Mother or father still alive	52.7%	14.5%	-38.2**
Co-resides with parents	4.9%	1.4%	-3.4**
Partner			
Has a partner alive	61.6%	59.8%	-1.8
Has a partner aged 75 or more	0.4%	10.5%	10.0**
Has a co-residing partner	60.7%	59.1	-1.6
N	1,398	1,787	-

Robustness checks

- Are the eldest individuals in the sample driving the results?
 - Results remain similar when excluding them
- Endogeneity of geographical distance of relatives
 - Reasons to worry: theoretical + Hoerger et al. (1996)
 - Bolin et al. (2008), Stern (1995), Charles and Sevak (2005): a limited bias
 - Our results remain similar when excluding these variables
- Heterogeneity of effects [Not done yet]
 - Do effects vary with income? Impairments severity?
 - Isolate "aging disabled" from "elderly dependent"

Potential limits

Identification assumptions:

- No cohort effects
- No other source of discontinuity at age 60

\rightarrow retirement as a confounding factor?

- Retirement spike at age 60 in France
- Evidence on subsequent change in home production (Stancanelli and Van Soest, 2012): not against our results (?)
- Retirement dummy: never significant in our estimations

• Differential sample selection before and after 60?

- HSM: individuals living in the community only
- Difference in home care subsidies \Rightarrow difference in probability to reside in an institution?
 - Yes in the US: Ettner (1994), Pezzin et al. (1996)
 - Yes in France Probability to live in an institution