Disability costs and equivalence scales in the older population

Marcello Morciano^{1,2} Ruth Hancock¹ Stephen Pudney²

¹Health Economics Group, University of East Anglia (UK)

²Institute for Social and Economic Research, University of Essex (UK)

2nd International Conference on Evidence-based Policy in Long-term Care, London, 5-8 September 2012

Outline

Motivation

- Rationale
- Literature
- The Standard of Living (SoL) approach

2 Method

- The econometric framework
- Measurement issues
- Econometric specification
- Data

3 Results

- Parameter estimates
- The extra cost of disability
- 4 Discussion & Conclusions

Rationale

A B > A B >

Motivations

- Significant additional costs associated with disability.
- Social security benefits designed to compensate for consumption costs associated with disability.
- Distributive analysis should make some allowance for the additional living costs induced by disability by:

disregarding disability benefits from the income indicator;

identifying (in)directly the extra costs induced by disability.

Quantify The Monetary Costs Associated With Disability

Different approaches have been proposed:

- DIRECT APPROACHES: asking disabled people to identify the costs they face as a direct consequence of their disability (*Martin and White, 1988; Thompson et al., 1990*);
- INDIRECT APPROACHES: comparing the living standards of disabled *vs* non disabled people, ceteris paribus and developing disability-specific equivalence scales¹.
 - Pragmatic approach;
 - Objective approach (Jones and O'Donell, 1995 for the UK);
 - Subjective approach (Stewart, 2009 for the UK);
 - Standard of Living approach (*Berthoud et al., 1993; Zaidi and Burchardt, 2005 for the UK*).

¹A vector of coefficients which standardize heterogeneities in non-income dimensions of one's living standards according a reference category. $\langle a \rangle = a |a \rangle \circ \circ \circ \circ$

Rationale Literature The Standard of Living (SoL) approach

The Standard of Living (SoL) approach

The econometric framework Measurement issues Econometric specification Data

The Standard of Living (SoL) approach

$$S = f(Y) - g(D) + h(X, \varepsilon)$$

What additional income Δ would a person with disability D and income Y require to become as well-off as he or she would be with disability reduced to the reference level D_0 ?

min
$$\Delta$$
 subject to : $f(Y + \Delta) - g(D) = f(Y) - g(D_0)$

 Δ and the associated proportional equivalence scale $\sigma = \frac{Y + \Delta}{Y}$ depend on the levels of both Y and D.

• if
$$f(Y) = \gamma_1 Y$$
 then $\sigma = [g(D) - g(D_0)]$

• if $f(Y) = \gamma_1 ln(Y)$ then $\sigma = exp[g(D) - g(D_0)]$

• if $f(Y) = \gamma_1 ln(Y) + \gamma_2 [ln(Y)]^2$ then $\sigma = Y^{-1} exp \left| \frac{-\gamma_1 - \sqrt{\gamma_1^2 - 4\gamma_2 C}}{2\gamma_2} \right|$

The econometric framework Measurement issues Econometric specification Data

How measuring S, D and Y ?

- Estimates depend "crucially on the choice of a suitable S indicator and its elasticity with respect to income and disability status" (*Zaidi and Burchardt, 2005 pg. 122*);
- Disability is a multidimensional phenomenon (*Manton et al., 2000*); Set of (self-reported) indicators used in the analysis matters (*Van Brakel and Officer, 2008*);
- Income definition in use matters (*Stapleton et al., 2008*).

イロト イポト イヨト イヨト

A two-latent variable structural equation framework

$$S_{iq} = 1(\lambda_q \varphi_i + \zeta_j q)$$

$$D_{ik} = 1(\mu_k \eta_i + \xi_i k)$$

$$\eta_i = \beta z_i + \varepsilon_{2i}$$

$$\varphi_i = f(Y_i; \gamma) + \alpha_1 \eta_i + \alpha_2 x_i + \varepsilon_{1i}$$

< 口 > < 同

э

2007-08 Family Resource Survey (FRS)

- produced by the Department for Work and Pensions in UK;
- Collects detailed information on:
 - income;
 - difficulty in domain of life (disability);
 - Household deprivation ("can't afford" or "don't have" a set of 'necessities').

Sample selection: Households of pensioners in the Great Britain (8,183 individuals).

< 口 > < 同 >

Parameter estimates The extra cost of disability

SoL indicators Sample means, Factor loadings λ_q and squared correlations of SoL indicators with φ

Indicator(s):	Sample mean (SD)	Factor Loading	R ²
enough money to keep your home in a decent state of decoration	0.083 (0.276)	1.229***	0.710
hobby or leisure activity	0.036 (0.187)	0.86***	0.545
holidays away from home one week a year	0.162 (0.368)	1.139***	0.677
household contents insurance	0.049 (0.217)	0.864***	0.547
friends/family round for drink or meal at least once a month	0.068 (0.252)	0.972***	0.604
make savings of $\pounds 10$ a month or more	0.214 (0.41)	1.001***	0.618
two pairs of all weather shoes for each person in the HH	0.022 (0.146)	0.895***	0.564
replace any worn out furniture	0.153 (0.36)	1.789***	0.838
replace or repair broken electrical goods such as fridge, washing machine	0.104 (0.306)	1.615***	0.809
money to spend each week on yourself, not on your family	0.079 (0.27)	1.08***	0.654

Significance: * = 10%; ** = 5%; *** = 1%; R² is the squared correlation between Sq (Can afford to do/ have things or goods indicators) and φ . Estimates are obtained using the quadratic in ln(Y) model specification over a sample of 8,183 FRS 2007-8 respondents.

Morciano M.

Estimating Disability Costs

Parameter estimates The extra cost of disability

Disability indicators

Sample means, Factor loadings μ_k and squared correlations of SoL indicators with η

Indicator(s):	Sample mean (SD)	R ²	
difficulty in mobility (moving about)	0.327 (0.469)	2.138***	0.840
difficulty with lifting, carrying or moving objects	0.301 (0.459)	2.435***	0.872
difficulty with manual dexterity using hands for daily tasks	0.12 (0.325)	1.327***	0.669
difficulty - continence (bladder/bowel control)	0.071 (0.256)	0.766***	0.402
difficulty with communication (speech, hearing or eyesight)	0.089 (0.285)	0.656***	0.330
difficulty with memory/concentration/learning/understanding	0.063 (0.242)	0.813***	0.431
difficulty with recognising when in physical danger	0.013 (0.114)	0.737***	0.384
difficulty with your physical co-ordination	0.109 (0.312)	1.382***	0.686
difficulty in other area of life	0.123 (0.328)	0.465***	0.198

Significance: * = 10%; ** = 5%; *** = 1%; R² is the squared correlation between D_k and η . Estimates in the table are obtained using the quadratic in ln(Y) model specification over a sample of 8,183 FRS 2007-8 respondents.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 ����

Parameter estimates The extra cost of disability

The disability equation Structural parameters

Covariate(s):	Coeff.	S.E.
Spline age 73	0.033***	0.002
Spline age 73 and over	0.033***	0.003
Female	-0.005	0.028
Post-compulsory schooling	-0.036***	0.009
(ln) pre-disability benefit income	-0.114***	0.028
Home ownership	-0.299***	0.034
(ln) financial wealth	-0.029***	0.004

Note: Significance: * = 10%; ** = 5%, *** = 1%; ¹ Cut-off set to 73, the median age in the sample. Model also includes controls for region of residence and marital status. $R^2=0.127$. Estimates are obtained using the quadratic in ln(Y) model specification.

(日) (同) (三) (

ELE DOG

Parameter estimates The extra cost of disability

The standard of living equation

Structural parameters α and γ for latent disability and income, respectively

Parameter(s):	linear	linear in Y		n ln(Y)	quadratic in ln(Y)			
	Coeff.	S.E.	Coeff.	S.E.	Coeff.	S.E.		
	0.000+++	0.017	0.054***	0.017	0.02(***	0.017		
α_1	-0.233***	0.016	-0.234***	0.016	-0.230***	0.016		
γ1	0.003***	0.001	0.631***	0.026	-2.61***	0.201		
γ2					0.307***	0.019		
Κ	74			74		75		
L	-38718.413		-i.	-38759.401		-38694.623		
CF	1.004			0.992		0.994		
AIC	77584.826		-	77666.803		77539.247		
BIC	78103.552		-	78185.529	78064.983			

Notes: Significance: * = 10%; ** = 5%, *** = 1%. Models also include regional dummy variables and controls for socio-economic characteristics which are reported in Appendix B of the paper (see reference in the last slide). R² of model (1), (2) and (3) are 0.384; 0.334; and 0.382, respectively.

▲□▶ ▲□▶ ▲□▶ ▲□▶ 三回 ののの

Parameter estimates The extra cost of disability

The extra cost of Disability

Mean income, equivalence scale and extra cost of disability by deciles of η

Decile of $\hat{\eta}$	Mean Y £s pw, 2007 prices		Model (1) linear in Y		Model (2) linear in ln(Y)		Model (3) quadratic in ln(Y)	
	Per capita	Unadjusted for household composition	⊿ £s pw, 2007 prices	σ	⊿ £s pw, 2007 prices	σ	⊿ £s pw	σ
1	263.90	442.90						
2	206.00	353.10						
3	187.40	309.10						
4	162.80	257.70						
5	141.30	203.80						
6	148.70	221.50	17.40	1.11	23.10	1.10	22.10	1.21
7	172.20	264.10	62.00	1.35	95.10	1.38	67.80	1.40
8	175.50	263.80	91.00	1.50	149.60	1.60	98.00	1.54
9	174.10	255.50	116.30	1.72	193.10	1.83	126.10	1.78
10	181.70	264.10	163.70	2.06	307.50	2.36	179.90	2.17
Mean for deciles 6 to 10	170.40	253.80	90.0	1.55	153.60	1.65	98.70	1.62

Notes: Δs are expressed in f s pw, 2007 prices. Estimates of Δ are unadjusted for household composition.

All monetary values are rounded to the nearest 10p.

Reference disability level for computing Δ and σ is the median.

(日) (同) (三) (

-

ELE DOG

Discussion and Conclusions

- We derive a disability equivalence scale taking into account:
 - the latent nature of the constructs "disability" and "standard of living";
 - base-independence assumption is not supported by our data.
- Main findings:
 - log-quadratic function on income is preferable;
 - extra costs of disability are substancial and rise with severity.

Reference

 Morciano M., Hancock R. and Pudney S. (2012)
'Disability costs and equivalence scales in the older population' ISER working paper 2012-09. Colchester: Institute for Economic and Social Research, University of Essex (under review with Review of Income and Wealth)